The determinant $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ is not divisible by
$x$
${x^3}$
$14 + {x^2}$
${x^5}$
Evaluate the determinants
$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
If the system of equations $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$ has infinitely many solutions, then $13 \alpha \beta$ is equal to
Let $a_1,a_2,a_3,....,a_{10}$ be in $G.P.$ with $a_i > 0$ for $i = 1, 2,....,10$ and $S$ be the set of pairs $(r,k), r, k \in N$ (the set of natural numbers) for which
$\left| {\begin{array}{*{20}{c}}
{{{\log }_e}\,a_1^ra_2^k}&{{{\log }_e}\,a_2^ra_3^k}&{{{\log }_e}\,a_3^ra_4^k} \\
{{{\log }_e}\,a_4^ra_5^k}&{{{\log }_e}\,a_5^ra_6^k}&{{{\log }_e}\,a_6^ra_7^k} \\
{{{\log }_e}\,a_7^ra_8^k}&{{{\log }_e}\,a_8^ra_9^k}&{{{\log }_e}\,a_9^ra_{10}^k}
\end{array}} \right| = 0$
Then the number of elements in $S$, is
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$is
Find area of the triangle with vertices at the point given in each of the following: $(2,7),(1,1),(10,8)$