3 and 4 .Determinants and Matrices
hard

જો $A = \left[ {\begin{array}{*{20}{c}}
  1&0&0 \\ 
  2&1&0 \\ 
  { - 3}&2&1 
\end{array}} \right]\,$ અને  $B = \left[ {\begin{array}{*{20}{c}}
  1&0&0 \\ 
  { - 2}&1&0 \\ 
  7&{ - 2}&1 
\end{array}} \right]$ તો $AB$ મેળવો.

A

$I$

B

$A$

C

$B$

D

$0$

(AIEEE-2012)

Solution

$A = \left[ {\begin{array}{*{20}{c}}
1&0&0\\
2&1&0\\
{ – 3}&2&1
\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}
1&0&0\\
{ – 2}&1&0\\
7&{ – 2}&1
\end{array}} \right]$

$AB = \left[ {\begin{array}{*{20}{c}}
1&0&0\\
0&1&0\\
0&0&1
\end{array}} \right] = I$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.