If $0\, \le \,x\, < \frac{\pi }{2},$ then the number of values of $x$ for which $sin\,x -sin\,2x + sin\,3x=0,$ is
$2$
$1$
$3$
$4$
Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-
The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta = 2,$ is
If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to
The smallest positive values of $x$ and $y$ which satisfy $\tan (x - y) = 1,\,$ $\sec (x + y) = \frac{2}{{\sqrt 3 }}$ are
The number of solutions of the equation $1 + {\sin ^4}\,x = {\cos ^2}\,3x,x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ is