Gujarati
Trigonometrical Equations
medium

The number of real solutions of the equation $2 \sin 3 x+\sin 7 x-3=0$, which lie in the interval $[-2 \pi, 2 \pi]$ is

A

$1$

B

$2$

C

$3$

D

$4$

(KVPY-2017)

Solution

(b)

Given, $2 \sin 3 x+\sin 7 x-3=0$

$\Rightarrow \quad 2 \sin 3 x+\sin 7 x=3$

lt is possible only $\sin 3 x=1$ and $\sin 7 x=1$

$\therefore \quad \sin 3 x =1$

$\therefore \quad x =n \pi+(-1)^n \frac{\pi}{2}$

$x =\frac{n \pi}{3}+(-1)^n \frac{\pi}{6}$

$\because \quad \sin 7 x =1$

$\therefore \quad 7 x =m \pi+(-1)^m \frac{\pi}{2}$

$x =\frac{m \pi}{7}+(-1)^m \frac{\pi}{14}$

Hence, only two solution exists.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.