- Home
- Standard 11
- Mathematics
Trigonometrical Equations
medium
If $|k|\, = 5$ and ${0^o} \le \theta \le {360^o}$, then the number of different solutions of $3\cos \theta + 4\sin \theta = k$ is
A
Zero
B
Two
C
One
D
Infinite
Solution
(b) $3\cos \theta + 4\sin \theta = 5\,\left[ {\frac{3}{5}\cos \theta + \frac{4}{5}\sin \theta } \right] = 5\cos (\theta – \alpha )$
where $\cos \alpha = \frac{3}{5}$, $\sin \alpha = \frac{4}{5}$
Now $3\cos \theta + 4\sin \theta = k$
$\therefore$ $5\cos (\theta – \alpha ) = k$
$\Rightarrow \cos (\theta – \alpha ) = \pm 1$
$ \Rightarrow $ $\theta – \alpha = {0^o},\,{180^o} $
$\Rightarrow \theta = \alpha ,\,{\rm{ }}{180^o} + \alpha $.
Standard 11
Mathematics