If $|k|\, = 5$ and ${0^o} \le \theta \le {360^o}$, then the number of different solutions of $3\cos \theta + 4\sin \theta = k$ is

  • A

    Zero

  • B

    Two

  • C

    One

  • D

    Infinite

Similar Questions

If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is

  • [IIT 1963]

The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to 

The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :

  • [JEE MAIN 2021]

The number of solution of the equation,$\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ lying in $(0, \pi)$ is :

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$