Trigonometrical Equations
hard

જો $0\, \le \,x\, < \frac{\pi }{2},$  તો $x$ ની કિમતો ની સંખ્યા મેળવો ક જેથી સમીકરણ $sin\,x -sin\,2x + sin\,3x=0,$ થાય.

A

$2$

B

$1$

C

$3$

D

$4$

(JEE MAIN-2019)

Solution

$\sin \,x – \sin \,2x\, + \,\sin \,3x\, = \,0$

$ \Rightarrow \,(\sin \,x + \,\sin \,3x)\, – \,\sin \,2x\, = \,0$

$ \Rightarrow \,2\,\sin x.\,\cos \,x\, – \,\sin \,2x\, = \,0$

$ \Rightarrow \,\sin \,2x\,(2\cos x\, – \,1)\, = \,0$

$ \Rightarrow \,\sin \,2x\, = \,0$   or  $\cos \,x\, = \frac{1}{2}\,\, \Rightarrow \,x\, = 0\,,\,\frac{\pi }{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.