જો $0\, \le \,x\, < \frac{\pi }{2},$ તો $x$ ની કિમતો ની સંખ્યા મેળવો ક જેથી સમીકરણ $sin\,x -sin\,2x + sin\,3x=0,$ થાય.
$2$
$1$
$3$
$4$
$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ એ પૂર્ણાક છે.), જો $\theta = $
$x \in (0,4\pi )$ માં સમીકરણ $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi + x}}{3}} \right) = 1$ ના ઉકેલોનો સરવાળો મેળવો
સમીકરણ $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81,0 \leq x \leq \frac{\pi}{4}$ ના ઉકેલની સંખ્યા મેળવો.
જો $tanA + cotA = 4$, હોય તો $tan^4A + cot^4A$ ની કિમત મેળવો.
સમીકરણ યુગમો $x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ જ્યાં $x$ અને $y$ એ વાસ્તવિક હોય તેવા ઉકેલોનો ગણ ...... છે.