જો $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ અને $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ હોય તો
$M =\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
$L =\frac{1}{4 \sqrt{2}}-\frac{1}{4} \cos \frac{\pi}{8}$
$M =\frac{1}{4 \sqrt{2}}+\frac{1}{4} \cos \frac{\pi}{8}$
$L =-\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
જો $\tan m\theta = \tan n\theta $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $sin^4\,\,\alpha + 4\,cos^4\,\,\beta + 2 = 4\sqrt 2\,\,sin\,\alpha \,cos\,\beta ;$ $\alpha \,,\,\beta \, \in \,[0,\pi ],$ તો $cos( \alpha + \beta)$ = ......
સમીકરણ $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ ના ............... ઉકેલો મેળવો
સમિકરણ $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ નો ઉકેલ . . . . મેળવો.
જો $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, તો $\sin \theta = . . ..$