- Home
- Standard 11
- Mathematics
જો $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ અને $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ હોય તો
$M =\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
$L =\frac{1}{4 \sqrt{2}}-\frac{1}{4} \cos \frac{\pi}{8}$
$M =\frac{1}{4 \sqrt{2}}+\frac{1}{4} \cos \frac{\pi}{8}$
$L =-\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
Solution
$L =\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$
$\left(\because \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}\right)$
$\Rightarrow L =\left(\frac{1-\cos (\pi / 8)}{2}\right)-\left(\frac{1-\cos (\pi / 4)}{2}\right)$
$L =\frac{1}{2}\left[\cos \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{8}\right)\right]$
$L =\frac{1}{2 \sqrt{2}}-\frac{1}{2} \cos \left(\frac{\pi}{8}\right)$
$M =\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$
$M =\frac{1+\cos (\pi / 8)}{2}-\frac{1-\cos (\pi / 4)}{2}$
$M =\frac{1}{2} \cos \left(\frac{\pi}{8}\right)+\frac{1}{2 \sqrt{2}}$