If $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ and $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (where $\theta  \in \left( {0,\frac{\pi }{2}} \right))$, then the-value of $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ is

  • A

    $0$

  • B

    $A^2$

  • C

    $A^3$

  • D

    $2A^3$

Similar Questions

The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if

$\left| {\,\begin{array}{*{20}{c}}{11}&{12}&{13}\\{12}&{13}&{14}\\{13}&{14}&{15}\end{array}\,} \right| = $

Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.

If the system of equations

$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $

$ x+(\cos \alpha) y+(\sin \alpha) z=0 $

$ x+(\sin \alpha) y-(\cos \alpha) z=0$

has a non-trivial solution, then $\alpha \in\left(0, \frac{\pi}{2}\right)$ is equal to :

  • [JEE MAIN 2024]

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$  are