3 and 4 .Determinants and Matrices
hard

The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is

A

${\alpha ^2} + {\beta ^2}$

B

${\alpha ^2} - {\beta ^2}$

C

$1$

D

$0$

Solution

(d) $1\,(1 – {\cos ^2}\beta ) – \cos (\alpha – \beta )$ $[\cos (\alpha – \beta ) – \cos \alpha \cos \beta ]$

$ + \cos \alpha [\cos \beta \cos (\alpha – \beta ) – \cos \alpha ]$

$ = 1 – {\cos ^2}\beta – {\cos ^2}\alpha – {\cos ^2}(\alpha – \beta )$$ + 2\cos \alpha \cos \beta \cos (\alpha – \beta )$

= $1 – {\cos ^2}\beta – {\cos ^2}\alpha + \cos (\alpha – \beta )$

$(2\cos \alpha \cos \beta – \cos (\alpha – \beta ))$

= $1 – {\cos ^2}\beta – {\cos ^2}\alpha + \cos (\alpha – \beta )$

$[\cos (\alpha + \beta ) + \cos (\alpha – \beta ) – \cos (\alpha – \beta )]$

= $1 – {\cos ^2}\beta – {\cos ^2}\alpha + \cos (\alpha – \beta )\cos (\alpha + \beta )$

= $1 – {\cos ^2}\beta – {\cos ^2}\alpha + {\cos ^2}\alpha {\cos ^2}\beta – {\sin ^2}\alpha {\sin ^2}\beta $

= $1 – {\cos ^2}\beta – {\cos ^2}\alpha (1 – {\cos ^2}\beta ) – {\sin ^2}\alpha {\sin ^2}\beta $

= $1 – {\cos ^2}\beta – {\cos ^2}\alpha {\sin ^2}\beta – {\sin ^2}\alpha {\sin ^2}\beta $

= $1 – {\cos ^2}\beta – {\sin ^2}\beta  = 0.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.