The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is
${\alpha ^2} + {\beta ^2}$
${\alpha ^2} - {\beta ^2}$
$1$
$0$
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&a&{b + c}\\1&b&{c + a}\\1&c&{a + b}\end{array}\,} \right|$is
${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ this system of equations has
Let $m$ and $M$ be respectively the minimum and maximum values of
$\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$.
Then the ordered pair $( m , M )$ is equal to
Two fair dice are thrown. The numbers on them are taken as $\lambda$ and $\mu$, and a system of linear equations
$x+y+z=5$ ; $x+2 y+3 z=\mu$ ; $x+3 y+\lambda z=1$
is constructed. If $\mathrm{p}$ is the probability that the system has a unique solution and $\mathrm{q}$ is the probability that the system has no solution, then :
Statement $1$ : If the system of equations $x + ky + 3z = 0, 3x+ ky - 2z = 0, 2x + 3y - 4z = 0$ has a nontrivial solution, then the value of $k$ is $\frac{31}{2}$
Statement $2$ : A system of three homogeneous equations in three variables has a non trivial solution if the determinant of the coefficient matrix is zero.