જો $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ અને $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (કે જ્યાં $\theta \in \left( {0,\frac{\pi }{2}} \right))$, હોય તો $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ ની કિમંત મેળવો.
$0$
$A^2$
$A^3$
$2A^3$
$m$ ની કેટલી કિમંતો માટે રેખાઓ $x + y - 1 = 0$, $(m - 1) x + (m^2 - 7) y - 5 = 0 \,\,\&\,\, (m - 2) x + (2m - 5) y = 0$ ઓ સંગામી થાય.
$\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ એ.. .. વડે વિભાજ્ય નથી.
જો $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x \ne 0$ અને $a + b + c \ne 0$, તો $x$ મેળવો.
સમીકરણ સંહતિ $2x + y - z = 7,\,\,x - 3y + 2z = 1,\,x + 4y - 3z = 5$ ના ઉકેલની સંખ્યા મેળવો.
જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો $S$ એ . . . .