If $3\cos \theta + 4\sin \theta = 5$ then $3\sin \theta - 4\cos \theta $ is
$1$
$-1$
$0$
$\frac {1}{2}$
For any $\theta \, \in \,\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$, the expression $3\,{\left( {\sin \,\theta - \cos \,\theta } \right)^4} + 6{\left( {\sin \,\theta + \cos \,\theta } \right)^2} + 4\,{\sin ^6}\,\theta $ equals
$\frac{{\sec 8A - 1}}{{\sec 4A - 1}} = $
If $\tan \alpha = \frac{1}{7}$ and $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, then $2\beta $ is equal to
$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $
In a triangle $ABC,$ the value of $\sin A + \sin B + \sin C$ is