Which of the following functions have the maximum value unity ?
$sin^2 x - cos^2 x$
$\frac{{\sin \,2x\,\, - \,\,\cos \,2x}}{{\sqrt 2 }}$
$-\frac{{\sin \,2x\,\, - \,\,\cos \,2x}}{{\sqrt 2 }}$
All of the above
$1 + \cos 2x + \cos 4x + \cos 6x = $
Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$
Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then $\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ is equal to
The value of $ \cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right)$ is
If $A$ and $B$ are complimentary angles, then :