- Home
- Standard 11
- Mathematics
If $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ and $a\,\tan x = b\,\tan y,$ then $\frac{{{a^2}}}{{{b^2}}}$ is equal to
$\frac{{(b - c)\,\,(d - b)}}{{(a - d)\,\,(c - a)}}$
$\frac{{(a - d)\,\,(c - a)}}{{(b - c)\,\,(d - b)}}$
$\frac{{(d - a)\,\,(c - a)}}{{(b - c)\,\,(d - b)}}$
$\frac{{(b - c)\,\,(b - d)}}{{(a - c)\,\,(a - d)}}$
Solution
(b) $a{\sin ^2}x + b{\cos ^2}x = c \Rightarrow (b – a){\cos ^2}x = c – a$
$\Rightarrow (b – a) = (c – a)(1 + {\tan ^2}x)$
$b{\sin ^2}y + a{\cos ^2}y = d \Rightarrow (a – b){\cos ^2}y = d – b$
$ \Rightarrow (a – b) = (d – b)(1 + {\tan ^2}y)$
$\therefore {\tan ^2}x = \frac{{b – c}}{{c – a}},\,\,{\tan ^2}y = \frac{{a – d}}{{d – b}}$
$\therefore \frac{{{{\tan }^2}x}}{{{{\tan }^2}y}} = \frac{{(b – c)(d – b)}}{{(c – a)(a – d)}}$…..$(i)$
But $a\tan x = b\tan y,$
$i.e.,$ $\frac{{\tan x}}{{\tan y}} = \frac{b}{a}$…..$(ii)$
From $(i)$ and $(ii), $
$\frac{{{b^2}}}{{{a^2}}} = \frac{{(b – c)(d – b)}}{{(c – a)(a – d)}}$
$ \Rightarrow \frac{{{a^2}}}{{{b^2}}} = \frac{{(c – a)(a – d)}}{{(b – c)(d – b)}}$.