3 and 4 .Determinants and Matrices
normal

If $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
0&1
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{\frac{{\sqrt 3 }}{2}}&{\frac{1}{2}}\\
{\frac{{ - 1}}{2}}&{\frac{{\sqrt 3 }}{2}}
\end{array}} \right]$ , then $(BB^TA)^5$ is equal to

A

$\left[ {\begin{array}{*{20}{c}}
{2 + \sqrt 3 }&1\\
{ - 1}&{2 - \sqrt 3 }
\end{array}} \right]$

B

$\frac{1}{2}\left[ {\begin{array}{*{20}{c}}
1&5\\
0&1
\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}
1&5\\
0&1
\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}
5&1\\
0&1
\end{array}} \right]$

Solution

$\mathrm{BB}^{\mathrm{T}}=\left[\begin{array}{cc}{\frac{\sqrt{3}}{2}} & {\frac{1}{2}} \\ {-\frac{1}{2}} & {\frac{\sqrt{3}}{2}}\end{array}\right]\left[\begin{array}{cc}{\frac{\sqrt{3}}{2}} & {-\frac{1}{2}} \\ {\frac{1}{2}} & {\frac{\sqrt{3}}{2}}\end{array}\right]$

$=\left[\begin{array}{cc}{\frac{3}{4}+\frac{1}{4}} & {-\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}} \\ {-\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}} & {-\frac{1}{4}+\frac{3}{4}}\end{array}\right]=\left[\begin{array}{cc}{1} & {0} \\ {0} & {1}\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.