3 and 4 .Determinants and Matrices
hard

Let $A$ be a $2 \times 2$ real matrix with entries from $\{0,1\}$ and $|\mathrm{A}| \neq 0 .$ Consider the following two statements :

$(P)$ If $A \neq I_{2},$ then $|A|=-1$

$(\mathrm{Q})$ If $|\mathrm{A}|=1,$ then $\operatorname{tr}(\mathrm{A})=2$

where $I_{2}$ denotes $2 \times 2$ identity matrix and $\operatorname{tr}(A)$ denotes the sum of the diagonal entries of $A$ Then

A

$(P)$ is true and $(\mathrm{Q})$ is false

B

Both $(P)$ and $(Q)$ are false

C

Both $(P)$ and $(Q)$ are true

D

$(P)$ is false and $(Q)$ is true

(JEE MAIN-2020)

Solution

$|A| \neq 0$

For $(\mathrm{P}): \mathrm{A} \neq \mathrm{I}_{2}$

So, $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

or $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

IAl can be -1 or 1

So (P) is false.

For $(\mathrm{Q}) ; \quad|\mathrm{A}|=1$

$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

$\Rightarrow \operatorname{tr}(\mathrm{A})=2$

$\Rightarrow \mathrm{Q}$ is true

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.