- Home
- Standard 12
- Mathematics
Let $A$ be a $2 \times 2$ real matrix with entries from $\{0,1\}$ and $|\mathrm{A}| \neq 0 .$ Consider the following two statements :
$(P)$ If $A \neq I_{2},$ then $|A|=-1$
$(\mathrm{Q})$ If $|\mathrm{A}|=1,$ then $\operatorname{tr}(\mathrm{A})=2$
where $I_{2}$ denotes $2 \times 2$ identity matrix and $\operatorname{tr}(A)$ denotes the sum of the diagonal entries of $A$ Then
$(P)$ is true and $(\mathrm{Q})$ is false
Both $(P)$ and $(Q)$ are false
Both $(P)$ and $(Q)$ are true
$(P)$ is false and $(Q)$ is true
Solution
$|A| \neq 0$
For $(\mathrm{P}): \mathrm{A} \neq \mathrm{I}_{2}$
So, $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
or $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
IAl can be -1 or 1
So (P) is false.
For $(\mathrm{Q}) ; \quad|\mathrm{A}|=1$
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
$\Rightarrow \operatorname{tr}(\mathrm{A})=2$
$\Rightarrow \mathrm{Q}$ is true