7.Binomial Theorem
hard

જો ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ ના વિસ્તરણમાં પદોની સંખ્યા $28$ છે,તો આ વિસ્તરણમાંના બધાજ પદોના સહગુણકોનો સરવાળો . . . . છે. 

A

$243$

B

$729$

C

$64$

D

$2187$

(JEE MAIN-2016)

Solution

Clearly, number of terms in the expansion of

$\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}$ is $\frac{(n+2)(n+1)}{2}$ or $^{n+2} C_{2}$

[assuming $\left.\frac{1}{x} \text { and } \frac{1}{x^{2}} \text { distinct }\right]$

$\therefore \frac{(n+2)(n+1)}{2}=28$

$ \Rightarrow $ $(n+2)(n+1)=56=(6+1)(6+2) \Rightarrow n=6$

Hence, sum of coefficients $=(1-2+4)^{6}=3^{6}$

$=729$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.