3 and 4 .Determinants and Matrices
normal

જો  $A\, = \,\left[ \begin{gathered}
  1\ \ \ \,1\ \ \ \,2\ \ \  \hfill \\
  0\ \ \ \,2\ \ \ \,1\ \ \  \hfill \\
  1\ \ \ \,0\ \ \ \,2\ \ \  \hfill \\ 
\end{gathered}  \right]$ અને $A^3 = (aA-I) (bA-I)$,કે જ્યાં $a, b$ એ પૃણાંક છે  અને એકમ શ્રેણિક $I$ ની કક્ષા  $3 × 3$ હોય તો $(a + b)$ મેળવો.

A

$4$

B

$5$

C

$6$

D

$7$

Solution

$|A-\lambda I|=0$

$\left| {\begin{array}{*{20}{c}}
{1 – \lambda }&1&2\\
0&{2 – \lambda }&1\\
1&0&{2 – \lambda }
\end{array}} \right| = 0$

$(1-\lambda)\left[(2-\lambda)^{2}-0\right]-(0-1)+2(0-(2-\lambda))=0$

$(1-\lambda)(2-\lambda)^{2}+1-4+2 \lambda=0$

$(1-\lambda)\left(\lambda^{2}-4 \lambda+4\right)-3+2 \lambda=0$

$\lambda^{2}-4 \lambda+4-\lambda^{3}+4 \lambda^{2}-4 \lambda-3+2 \lambda=0$

$\lambda^{3}=5 \lambda^{2}-6 \lambda+1=(5 \lambda-1)(\lambda-1)$

$ A^{3}=(5 A-I)(A-I) $ 

$ a=5, b=1 $ or $ a=1, b=5 $ 

$ \Rightarrow a+b=6 $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.