જો $\left| \begin{gathered}
- 6\ \ \,\,1\ \ \,\,\lambda \ \ \hfill \\
\,0\ \ \,\,\,\,3\ \ \,\,7\ \ \hfill \\
- 1\ \ \,\,0\ \ \,\,5\ \ \hfill \\
\end{gathered} \right| = 5948 $, તો $\lambda $ મેળવો.
$2011$
$2013$
$2015$
$2017$
અહી $p$ અને $p+2$ એ અવિભાજ્ય સંખ્યા છે અને $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ હોય તો $\alpha$ અને $\beta$ ની મહતમ કિમંતોનો સરવાળો મેળવો કે જેથી $p ^{\alpha}$ અને $( p +2)^{\beta}$ એ $\Delta$ ને વિભાજે .
સુરેખ સમીકરણ સંહતિ $x + y + z = 1;x + ay + z = 1;ax + by + z = 0$ ને ઉકેલ ન હોય તે માટેની $'b'$ ની ભિન્ન કિંમતોનો ગણ જો $S$ હોય તો , $S$ એ . ..
$\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$ નું મૂલ્ય શોધો. ( ${R_1} = {R_3}$ છે. )
જો $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ હોય તો $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ ની કિમંત મેળવો.
$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R$ નું મહત્તમ મૂલ્ય ..... છે.