If $f : R \to R, f(x) = x^2 + 1$, then $f^{-1}(17)$ and $f^{-1}(-3)$ are

  • A

    $\{8, -8\}, \{\sqrt 2 \}$

  • B

    $\{3, -3\}, \phi$

  • C

    $\{4, -4\}, \phi$

  • D

    $\phi ,\{4, -4\}$

Similar Questions

Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of $f^{-1}$ is $f$, i.e., $\left(f^{-1}\right)^{-1}=f$.

If the function $f:[1,\;\infty ) \to [1,\;\infty )$ is defined by $f(x) = {2^{x(x - 1)}},$ then ${f^{ - 1}} (x)$ is

  • [IIT 1999]

Let $f: N \rightarrow Y $ be a function defined as $f(x)=4 x+3,$ where, $Y =\{y \in N : y=4 x+3$ for some $x \in N \} .$ Show that $f$ is invertible. Find the inverse.

The relation $R$ is defined on the set of natural numbers as $\{(a, b) : a = 2b\}$. Then $\{R^{ - 1}\}$ is given by

Consider $f: R _{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5 .$ Show that $f$ is invertible with $f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)$