- Home
- Standard 12
- Mathematics
1.Relation and Function
normal
If $f : R \to R, f(x) = x^2 + 1$, then $f^{-1}(17)$ and $f^{-1}(-3)$ are
A
$\{8, -8\}, \{\sqrt 2 \}$
B
$\{3, -3\}, \phi$
C
$\{4, -4\}, \phi$
D
$\phi ,\{4, -4\}$
Solution
$f^{-1}(17)=x(\text { say })$
$17=\mathrm{f}(\mathrm{x})$
$17=x^{2}+1$
$x=\pm 4$
$f^{-1}(-3)=y(\text { say })$
$-3=f(y)$
$-3=y^{2}+1$
$\mathrm{y}^{2}=-4$ Not possible
Standard 12
Mathematics