If $a * b=10$ ab on $Q^{+}$ then find the inverse of 0.01
Let $e$ be the identity element for $*$.
$\therefore a * e=a=e * a$
$\therefore a e=a \Rightarrow e=\frac{1}{10}$
Let $a^{\prime}$ be the inverse of $0.01 .$
$\therefore 0.01 * a^{\prime}=e$
$\therefore 10 \times \frac{1}{100} \times a^{\prime}=\frac{1}{10}$
$\Rightarrow a^{\prime}=1$
$\therefore$ Inverse of 0.01 is $1 .$
Let $f: R -\{3\} \rightarrow R -\{1\}$ be defined by $f(x)=\frac{x-2}{x-3} .$ Let $g: R \rightarrow R$ be given as $g ( x )=2 x -3$. Then, the sum of all the values of $x$ for which $f^{-1}( x )+ g ^{-1}( x )=\frac{13}{2}$ is equal to ...... .
Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of $f^{-1}$ is $f$, i.e., $\left(f^{-1}\right)^{-1}=f$.
Let $S=\{a, b, c\}$ and $T=\{1,2,3\} .$ Find $F^{-1}$ of the following functions $F$ from $S$ to $T$. if it exists. $F =\{( a , 3),\,( b , 2),\,( c , 1)\}$
Inverse of the function $y = 2x - 3$ is
State with reason whether following functions have inverse $f: \{1,2,3,4\}\rightarrow\{10\}$ with $f =\{(1,10),(2,10),(3,10),(4,10)\}$