1.Relation and Function
hard

If the function $f:[1,\;\infty ) \to [1,\;\infty )$ is defined by $f(x) = {2^{x(x - 1)}},$ then ${f^{ - 1}} (x)$ is

A

${\left( {\frac{1}{2}} \right)^{x(x - 1)}}$

B

$\frac{1}{2}(1 + \sqrt {1 + 4{{\log }_2}x} )$

C

$\frac{1}{2}(1 - \sqrt {1 + 4{{\log }_2}x} )$

D

Not defined

(IIT-1999)

Solution

(b) Given $f(x) = {2^{x(x – 1)}}\,$

$\Rightarrow \,\,x\,(x – 1) = {\log _2}f(x)$

$ \Rightarrow \,\,{x^2} – x – {\log _2}f(x) = 0\,\, $

$\Rightarrow \,\,x = \frac{{1 \pm \sqrt {1 + 4{{\log }_2}f(x)} }}{2}$

Only $x = \frac{{1 + \sqrt {1 + 4{{\log }_2}f(x)} }}{2}$ lies in the domain

$\therefore \,\,{f^{ – 1}}(x) = \frac{1}{2}\,[1 + \sqrt {1 + 4\,{{\log }_2}x} ]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.