3.Trigonometrical Ratios, Functions and Identities
normal

જો $\alpha $ અને $\beta $ એ સમીકરણ $sin^2\,x + a\, sin\, x + b = 0$ અને $cos^2\,x + c\, cos\, x + d = 0$ ના બીજો હોય તો $sin\,(\alpha + \beta )$ = 

A

$\frac{{2bd}}{{{b^2} + {d^2}}}$

B

$\frac{{{a^2} + {c^2}}}{{2ac}}$

C

$\frac{{{b^2} + {d^2}}}{{2bd}}$

D

$\frac{{2ac}}{{{a^2} + {c^2}}}$

Solution

According to the given condition. $\sin \alpha+\sin \beta=-a$ and $\cos \alpha+\cos \beta=-c$

$\Rightarrow 2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=-\mathrm{a}$      …..$(1)$

$\text { and } 2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=-\mathrm{c}$        …..$(2)$

$(1) \div(2)$

$\Rightarrow \tan \frac{\alpha+\beta}{2}=\frac{a}{c}$

$\Rightarrow \sin (\alpha+\beta)=\frac{2 \tan \frac{\alpha+\beta}{2}}{1+\tan ^{2} \frac{\alpha+\beta}{2}}=\frac{2 a c}{a^{2}+c^{2}}$

Hence, $( 4)$ is the correct answer.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.