If $\alpha $ and $\beta $ are solutions of $sin^2\,x + a\, sin\, x + b = 0$ as well that of $cos^2\,x + c\, cos\, x + d = 0$ , then $sin\,(\alpha + \beta )$ is equal to

  • A

    $\frac{{2bd}}{{{b^2} + {d^2}}}$

  • B

    $\frac{{{a^2} + {c^2}}}{{2ac}}$

  • C

    $\frac{{{b^2} + {d^2}}}{{2bd}}$

  • D

    $\frac{{2ac}}{{{a^2} + {c^2}}}$

Similar Questions

If $\sin \theta + \cos \theta = x,$ then ${\sin ^6}\theta + {\cos ^6}\theta = \frac{1}{4}[4 - 3{({x^2} - 1)^2}]$ for

If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to

If $\cos 3\theta = \alpha \cos \theta + \beta {\cos ^3}\theta ,$ then $(\alpha ,\beta ) = $

If $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ then $\cos 2A = $

If $\tan x = \frac{b}{a},$ then $\sqrt {\frac{{a + b}}{{a - b}}} + \sqrt {\frac{{a - b}}{{a + b}}} = $