If $\alpha $ and $\beta $ are solutions of $sin^2\,x + a\, sin\, x + b = 0$ as well that of $cos^2\,x + c\, cos\, x + d = 0$ , then $sin\,(\alpha + \beta )$ is equal to

  • A

    $\frac{{2bd}}{{{b^2} + {d^2}}}$

  • B

    $\frac{{{a^2} + {c^2}}}{{2ac}}$

  • C

    $\frac{{{b^2} + {d^2}}}{{2bd}}$

  • D

    $\frac{{2ac}}{{{a^2} + {c^2}}}$

Similar Questions

If $A$ lies in the third quadrant and $3\,\tan A - 4 = 0,$ then $5\,\sin 2A + 3\,\sin A + 4\,\cos A = $

Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$

In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to

If $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ then $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ equals :-

If $\tan \,(A + B) = p,\,\,\tan \,(A - B) = q,$ then the value of $\tan \,2A$ in terms of $p$ and $q$ is