If $z_1 , z_2$ and $z_3, z_4$ are $2$ pairs of complex conjugate numbers, then $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals 

  • [JEE MAIN 2014]
  • A

    $0$

  • B

    $\frac{\pi}{2}$

  • C

    $\frac{3\pi}{2}$

  • D

    $\pi $

Similar Questions

Given $z$ is a complex number such that  $|z| < 2,$ then the maximum value of $|iz + 6 -8i|$ is equal to-

Let $A =\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1- i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $A$ is

  • [JEE MAIN 2023]

Let $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$. Then $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$

  • [JEE MAIN 2022]

The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is

If $z = 3 + 5i,\,\,{\rm{then }}\,{z^3} + \bar z + 198 = $