4-1.Complex numbers
hard

If $z_1 , z_2$ and $z_3, z_4$ are $2$ pairs of complex conjugate numbers, then $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals 

A

$0$

B

$\frac{\pi}{2}$

C

$\frac{3\pi}{2}$

D

$\pi $

(JEE MAIN-2014)

Solution

Consider $\arg \left(\frac{z_{1}}{z_{4}}\right)+$ $\arg \left(\frac{z_{2}}{z_{3}}\right)$

$=\arg \left(z_{1}\right)-\arg \left(z_{4}\right)$ $+\arg \left(z_{2}\right)-\arg \left(z_{3}\right)$

$=\left(\arg \left(z_{1}\right)+\arg \left(z_{2}\right)\right)$ $-\left(\arg \left(z_{3}\right)+\arg \left(z_{4}\right)\right)$

given $\left( {{z_2} = {{\bar z}_1} and {z_4} = {{\bar z}_3}} \right)$ 

$ = \left( {\arg \left( {{z_1}} \right) + \arg \left( {{{\bar z}_1}} \right)} \right) – $ $\left( {\arg \left( {{z_3}} \right) + \arg \left( {{{\bar z}_3}} \right)} \right)$

$\left\{ \begin{gathered}
  \operatorname{also} (\arg \left( {{{\bar z}_1}} \right) =  – \arg \left( {{z_1}} \right) \hfill \\
  \arg \left( {{{\bar z}_3}} \right) =  – \arg \left( {{z_3}} \right) \hfill \\ 
\end{gathered}  \right\}$

$=\left(\arg \left(z_{1}\right)-\arg \left(z_{1}\right)\right)-\left(\arg \left(z_{3}\right)-\arg \left(z_{3}\right)\right)$

$=0-0=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.