Gujarati
4-1.Complex numbers
normal

Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-$I$ to the correct entries in List-$II$.

List-$I$ List-$II$
($P$) $|z|^2$ is equal to ($1$) $12$
($Q$) $|z-\bar{z}|^2$ is equal to ($2$) $4$
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to ($3$) $8$
($S$) $|z+1|^2$ is equal to ($4$) $10$
  ($5$) $7$

The correct option is:

A

$(\mathrm{A})(\mathrm{P}) \rightarrow(1)(\mathrm{Q}) \rightarrow(3)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(4)$

B

$(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(3) (S) \rightarrow (5)$

C

$(P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (5) (S) \rightarrow (1)$

D

 $(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(3)(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(4)$

(IIT-2023)

Solution

$\because|z|^3+2 z^2+4 \bar{z}-8=0$     $. . . . . . (1)$

Take conjugate both sides

$\Rightarrow|z|^3+2 z^2+4 z-8=0$    $. . . . . . .(2)$

$\operatorname{By}(1)-(2)$

$\Rightarrow 2\left(z^2-\bar{z}^2\right)+4(\bar{z}-z)=0$

$\Rightarrow z+\bar{z}=2$     $. . . . . .(3)$

$\Rightarrow|z+\bar{z}|=2$   $. . . . . (4)$

Let $z=x+i y$

$\therefore x=1 \quad \therefore z=1+\mathrm{i}$

Put in $(1)$

$\Rightarrow\left(1+y^2\right)^{3 / 2}+2\left(1-y^2+2 i y\right)+4(1-i y)-8=0$

$\Rightarrow\left(1+y^2\right)^{3 / 2}=2\left(1+y^2\right)$

$\Rightarrow \sqrt{1+y^2}=2=|z|$

Also $\mathrm{y}= \pm \sqrt{3}$

$\therefore z=1 \pm i \sqrt{3}$

$\Rightarrow z-\bar{z}= \pm 2 i \sqrt{3}$

$\Rightarrow|z-\bar{z}|=2 \sqrt{3}$

$\Rightarrow|z-\bar{z}|^2=12$

Now $z+1=2+i \sqrt{3}$

$|z+1|^2=4+3=7$

$\therefore P \rightarrow 2 ; Q \rightarrow 1 ; R \rightarrow 3 ; S \rightarrow 5$

$\therefore$ Option $[B]$ is correct.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.