If $a, b, c, d$ and $p$ are distinct real numbers such that $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2)  \le 0$, then

  • [AIEEE 2012]
  • A

    $a, b, c, d$ are in $A.P.$

  • B

    $ab =cd$

  • C

    $ac = bd$

  • D

    $a, b, c, d$ are in $G.P.$

Similar Questions

If the set of all $a \in R$, for which the equation $2 x^2+$ $(a-5) x+15=3 a$ has no real root, is the interval $(\alpha, \beta)$, and $X=\{x \in Z: \alpha < x < \beta\}$, then $\sum_{x \in X} x^2$ is equal to

  • [JEE MAIN 2025]

If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $

The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is

  • [JEE MAIN 2019]

Suppose $a, b, c$ are positive integers such that $2^a+4^b+8^c=328$. Then, $\frac{a+2 b+3 c}{a b c}$ is equal to

  • [KVPY 2015]

Let $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$ be the solution of the equation $4 x^4+8 x^3-17 x^2-12 x+9=0$ and $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. Then the value of $\mathrm{m}$ is..........

  • [JEE MAIN 2024]