જો $a, b, c, d$ અને $p$ ભિન્ન વાસ્તવિક સંખ્યાઑ છે કે જેથી $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2) \le 0$ થાય તો ...
$a, b, c, d$ સમાંતર શ્રેણીમાં છે
$ab =cd$
$ac = bd$
$a, b, c, d$ સમગુણોત્તર છે
$x^2 - 6x - 2 = 0$ ના બીજ $\alpha$ અને $\beta$ લો. જ્યાં $\alpha$ > $\beta$ જો બધા $n \geq 1$ માટે $a_n = \alpha^n - \beta^n$ હોય, તો $\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}$ નું મૂલ્ય કેટલું થાય ?
$x$ ની બધી જ વાસ્તવિક કિંમતો માટે $\frac{x}{{{x^2}\, + \,4}}$ ની કિંમતનો વિસ્તાર કેટલો થશે ?
સમીકરણ $ln(lnx)$ = $log_xe$ ના કેટલા ઉકેલો મળે?
સમીકરણ ${x^2} - |x + 2| + x > 0,$ માટે, $x$ ની વાસ્તવિક સંખ્યાઓનો ગણ મેળવો.
સમીકરણ $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા $.............$ છે.