In the equation ${x^3} + 3Hx + G = 0$, if $G$ and $H$ are real and ${G^2} + 4{H^3} > 0,$ then the roots are
All real and equal
All real and distinct
One real and two imaginary
All real and two equal
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$
If $a, b, c \in R$ and $1$ is a root of equation $ax^2 + bx + c = 0$, then the curve y $= 4ax^2 + 3bx+ 2c, a \ne 0$ intersect $x-$ axis at
If $a, b, c, d$ and $p$ are distinct real numbers such that $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2) \le 0$, then
lf $2 + 3i$ is one of the roots of the equation $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ then the real root of this equation
Let $\alpha_1, \alpha_2, \ldots, \alpha_7$ be the roots of the equation $x^7+$ $3 x^5-13 x^3-15 x=0$ and $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$. Then $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ is equal to $..................$.