Colum $I$ | Colum $II$ |
$(A)$ $(A+B)$ | $(p)$ North-east |
$(B)$ $(A-B)$ | $(q)$ Vertically upwards |
$(C)$ $(A \times B)$ | $(r)$ Vertically downwards |
$(D)$ $(A \times B) \times(A \times B)$ | $(s)$ None |
The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is
Obtain scalar product in terms of Cartesian component of vectors.
What is the angle between $\vec A\,\,$ and $\vec B\,\,$ if $\vec A\,\,$ and $\vec B\,\,$ are the adjacent sides of a parallelogran drawn from a common point and the area of the parallelogram is $\frac {AB}{2}$