- Home
- Standard 12
- Mathematics
If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right],$ then show that $|2 A|=4|A|$.
Solution
The given matrix is $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$
$\therefore 2 A=2\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
$\begin{aligned} L H S:|2 A| &=\left|\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right| \\ &=2 \times 4-4 \times 8 \\ &=8-32=-24 \end{aligned}$
Now, $|A|=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=1 \times 2-2 \times 4=2 \times 8=-6$
$R H S: 4|A|=4 \times(-6)=-24$
$\therefore L. H. S.=\therefore \mathrm{R.} \mathrm{H.} \mathrm{S}$
Similar Questions
Let $\alpha, \beta$ and $\gamma$ be real numbers. consider the following system of linear equations
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Match each entry in List – $I$ to the correct entries in List-$II$
List – $I$ | List – $II$ |
($P$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has | ($1$) a unique solution |
($Q$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has | ($2$) no solution |
($R$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has |
($3$) infinitely many solutions |
($S$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has | ($4$) $x=11, y=-2$ and $z=0$ as a solution |
($5$) $x=-15, y=4$ and $z=0$ as a solution |
Then the system has