If $x, y, z$ are different and $\Delta=\left|\begin{array}{lll}x & x^{2} & 1+x^{2} \\ y & y^{2} & 1+y^{2} \\ z & z^{2} & 1+z^{2}\end{array}\right|=0,$ then show that $1+x y z=0$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have $\Delta=\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|$

$=\left|\begin{array}{lll}x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1\end{array}\right|+\left|\begin{array}{lll}x & x^{2} & x^{3} \\ y & y^{2} & y^{3} \\ z & z^{2} & z^{3}\end{array}\right|$

$=(-1)^{2}\left|\begin{array}{ccc}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|+x y z\left|\begin{array}{ccc}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right| \quad\left(\text { Using } \mathrm{C}_{3} \leftrightarrow \mathrm{C}_{2} \text { and then } \mathrm{C}_{1} \leftrightarrow \mathrm{C}_{2}\right)$

$=\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|(1+x y z)$

$=(1+x y z)\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & y-x & y^{2}-x^{2} \\
0 & z-x & z^{2}-x^{2}
\end{array}\right| $ $( { Using } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1})$

Taking out common factor $(y-x)$ from $\mathrm{R}_{2}$ and $(z-x)$ from $\mathrm{R}_{3},$ we get

$\Delta=(1+x y z)(y-x)(z-x)\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & y+x \\
0 & 1 & z+x
\end{array}\right|$

$=(1+x y z)(y-x)(z-x)(z-y)$ (on expanding along $\mathrm{C}_{1}$ )

since $\Delta=0$ and $x, y, z$ are all different, i.e., $x-y \neq 0, y-z \neq 0, z-x \neq 0,$ we get $1+x y z=0$

Similar Questions

The value of $\left| {\,\begin{array}{*{20}{c}}{{5^2}}&{{5^3}}&{{5^4}}\\{{5^3}}&{{5^4}}&{{5^5}}\\{{5^4}}&{{5^5}}&{{5^7}}\end{array}\,} \right|$ is

If $\left| {\,\begin{array}{*{20}{c}}{{{(b + c)}^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{{(c + a)}^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{{(a + b)}^2}}\end{array}\,} \right| = k\,abc{(a + b + c)^3}$, then the value of $k$ is

Let the numbers $2, b, c$ be in an $A.P$ and $A = \left[ {\begin{array}{*{20}{c}}
  1&1&1 \\ 
  2&b&c \\ 
  4&{{b^2}}&{{c^2}} 
\end{array}} \right]$. If $det(A) \in [2,16]$ then $c$ lies in the interval

  • [JEE MAIN 2019]

The number of distinct real roots of the equaiton, $\left|\begin{array}{*{20}{c}}
{\cos \,\,x}&{\sin \,\,x}&{\sin \,\,x}\\
{\sin \,\,x}&{\cos \,\,x}&{\sin \,\,x}\\
{\sin \,\,x}&{\sin \,\,x}&{\cos \,\,x}
\end{array}\right|\,\, = \,\,0$ in the interval $\left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is

  • [JEE MAIN 2016]

Without expanding, prove that $\Delta=\left|\begin{array}{ccc}x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1\end{array}\right|=0$