यदि $x, y, z$ विभिन्न हों और $\Delta=\left|\begin{array}{ccc}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0,$ तो दर्शाइए कि $1+x y z=0$
We have $\Delta=\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|$
$=\left|\begin{array}{lll}x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1\end{array}\right|+\left|\begin{array}{lll}x & x^{2} & x^{3} \\ y & y^{2} & y^{3} \\ z & z^{2} & z^{3}\end{array}\right|$
$=(-1)^{2}\left|\begin{array}{ccc}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|+x y z\left|\begin{array}{ccc}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right| \quad\left(\text { Using } \mathrm{C}_{3} \leftrightarrow \mathrm{C}_{2} \text { and then } \mathrm{C}_{1} \leftrightarrow \mathrm{C}_{2}\right)$
$=\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|(1+x y z)$
$=(1+x y z)\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & y-x & y^{2}-x^{2} \\
0 & z-x & z^{2}-x^{2}
\end{array}\right| $ $( { Using } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1})$
Taking out common factor $(y-x)$ from $\mathrm{R}_{2}$ and $(z-x)$ from $\mathrm{R}_{3},$ we get
$\Delta=(1+x y z)(y-x)(z-x)\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & y+x \\
0 & 1 & z+x
\end{array}\right|$
$=(1+x y z)(y-x)(z-x)(z-y)$ (on expanding along $\mathrm{C}_{1}$ )
since $\Delta=0$ and $x, y, z$ are all different, i.e., $x-y \neq 0, y-z \neq 0, z-x \neq 0,$ we get $1+x y z=0$
माना कि $P=\left[a_1\right]$ एक $3 \times 3$ आव्यूह (matrix) है और $Q=\left[b_1\right]$, जहाँ $b_{\|}=2^{[H]} a_{\|}$जब $1 \leq i, j \leq 3$ है। यदि $P$ के सारणिक (determinant) का मान $2$ है तो आव्यूह $Q$ के सारणिक का मान निम्न है
दर्शाइए कि सारणिक
$\Delta=\left|\begin{array}{ccc}
(y+z)^{2} & x y & z x \\
x y & (x+z)^{2} & y z \\
x z & y z & (x+y)^{2}
\end{array}\right|=2 x y z(x+y+z)^{3}$
बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।
$\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
$\left| {\,\begin{array}{*{20}{c}}{{a^2} + {x^2}}&{ab}&{ca}\\{ab}&{{b^2} + {x^2}}&{bc}\\{ca}&{bc}&{{c^2} + {x^2}}\end{array}\,} \right|$ का भाजक है
सारणिक $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$, if $a,b,c$