3 and 4 .Determinants and Matrices
medium

The value of $\left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + 2b}\\{a + 2b}&a&{a + b}\\{a + b}&{a + 2b}&a\end{array}\,} \right|$ is equal to

A

$9{a^2}(a + b)$

B

$9{b^2}(a + b)$

C

${a^2}(a + b)$

D

${b^2}(a + b)$

Solution

(b) Operating ${C_1} \to {C_1} + {C_2} + {C_3}$. We get the value of given determinant as $\left| {\,\begin{array}{*{20}{c}}{3a + 3b}&{a + b}&{a + 2b}\\{3a + 3b}&a&{a + b}\\{3a + 3b}&{a + 2b}&a\end{array}\,} \right|$

= $3\,(a + b)\,\left| {\,\begin{array}{*{20}{c}}1&{a + b}&{a + 2b}\\1&a&{a + b}\\1&{a + 2b}&a\end{array}\,} \right|$

Operate ${R_3} \to {R_3} – {R_1}$, ${R_2} \to {R_2} – {R_1}$

= $3\,(a + b)\,\left| {\,\begin{array}{*{20}{c}}1&{a + b}&{a + 2b}\\0&{ – b}&{ – b}\\0&b&{ – 2b}\end{array}\,} \right|$

$ = 3(a + b)\,(2{b^2} + {b^2}) = 9{b^2}(a + b)$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.