- Home
- Standard 12
- Mathematics
If $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],$ then $A B=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$. and $\mathrm{BA}=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right] .$ Clearly $\mathrm{AB} \neq \mathrm{BA}$.
Thus matrix multiplication is not commutative.
Solution
This does not mean that $\mathrm{AB} \neq \mathrm{BA}$ for every pair of matrices $\mathrm{A}, \mathrm{B}$ for which $\mathrm{AB}$ and $\mathrm{BA}$, are defined. For instance,
If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right],$ then $A B=B A=\left[\begin{array}{ll}3 & 0 \\ 0 & 8\end{array}\right]$
Observe that multiplication of diagonal matrices of same order will be commutative.