- Home
- Standard 12
- Mathematics
If $A=$ $\left[ {\begin{array}{*{20}{l}}
{\frac{2}{3}}&1&{\frac{5}{3}} \\
{\frac{1}{3}}&{\frac{2}{3}}&{\frac{4}{3}} \\
{\frac{7}{3}}&2&{\frac{2}{3}}
\end{array}} \right]$ and $B=$ $\left[ {\begin{array}{*{20}{l}}
{\frac{2}{5}}&{\frac{3}{5}}&1 \\
{\frac{1}{5}}&{\frac{2}{5}}&{\frac{4}{5}} \\
{\frac{7}{5}}&{\frac{6}{5}}&{\frac{2}{5}}
\end{array}} \right],$ then compute $3A-5B.$
$\left[ {\begin{array}{*{20}{l}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right]$
Solution
$3A – 5B = $ $3\left[ {\begin{array}{*{20}{l}}
{\frac{2}{3}}&1&{\frac{5}{3}} \\
{\frac{1}{3}}&{\frac{2}{3}}&{\frac{4}{3}} \\
{\frac{7}{3}}&2&{\frac{2}{3}}
\end{array}} \right]$ $ – 5\left[ {\begin{array}{*{20}{l}}
{\frac{2}{5}}&{\frac{3}{5}}&1 \\
{\frac{1}{5}}&{\frac{2}{5}}&{\frac{4}{5}} \\
{\frac{7}{5}}&{\frac{6}{5}}&{\frac{2}{5}}
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}}
2&3&5 \\
1&2&4 \\
7&6&2
\end{array}} \right]$ $ – \left[ {\begin{array}{*{20}{l}}
2&3&5 \\
1&2&4 \\
7&6&2
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}}
0&0&0 \\
0&0&0 \\
0&0&0
\end{array}} \right]$