3 and 4 .Determinants and Matrices
medium

If $A=$ $\left[ {\begin{array}{*{20}{l}}
  {\frac{2}{3}}&1&{\frac{5}{3}} \\ 
  {\frac{1}{3}}&{\frac{2}{3}}&{\frac{4}{3}} \\ 
  {\frac{7}{3}}&2&{\frac{2}{3}} 
\end{array}} \right]$ and  $B=$ $\left[ {\begin{array}{*{20}{l}}
  {\frac{2}{5}}&{\frac{3}{5}}&1 \\ 
  {\frac{1}{5}}&{\frac{2}{5}}&{\frac{4}{5}} \\ 
  {\frac{7}{5}}&{\frac{6}{5}}&{\frac{2}{5}} 
\end{array}} \right],$ then compute $3A-5B.$

A

$\left[ {\begin{array}{*{20}{l}}
  0&0&0 \\ 
  0&0&0 \\ 
  0&0&0 
\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{l}}
  0&0&0 \\ 
  0&0&0 \\ 
  0&0&0 
\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{l}}
  0&0&0 \\ 
  0&0&0 \\ 
  0&0&0 
\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{l}}
  0&0&0 \\ 
  0&0&0 \\ 
  0&0&0 
\end{array}} \right]$

Solution

$3A – 5B = $ $3\left[ {\begin{array}{*{20}{l}}
  {\frac{2}{3}}&1&{\frac{5}{3}} \\ 
  {\frac{1}{3}}&{\frac{2}{3}}&{\frac{4}{3}} \\ 
  {\frac{7}{3}}&2&{\frac{2}{3}} 
\end{array}} \right]$ $ – 5\left[ {\begin{array}{*{20}{l}}
  {\frac{2}{5}}&{\frac{3}{5}}&1 \\ 
  {\frac{1}{5}}&{\frac{2}{5}}&{\frac{4}{5}} \\ 
  {\frac{7}{5}}&{\frac{6}{5}}&{\frac{2}{5}} 
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{l}}
  2&3&5 \\ 
  1&2&4 \\ 
  7&6&2 
\end{array}} \right]$ $ – \left[ {\begin{array}{*{20}{l}}
  2&3&5 \\ 
  1&2&4 \\ 
  7&6&2 
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{l}}
  0&0&0 \\ 
  0&0&0 \\ 
  0&0&0 
\end{array}} \right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.