- Home
- Standard 12
- Mathematics
જો $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ અને $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],$ હોય, તો એવો $k$ શોધો કે જેથી $A^{2}=k A-2 I$ થાય.
$k=1$
$k=1$
$k=1$
$k=1$
Solution
$A^{2}=A .A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$
$\left[ {\begin{array}{*{20}{l}}
{3(3) + ( – 2)(4)}&{3( – 2) + ( – 2)( – 2)} \\
{4(3) + ( – 2)(4)}&{4( – 2) + ( – 2)( – 2)}
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{l}}
1&{ – 2} \\
4&{ – 4}
\end{array}} \right]$
Now $A^{2}=k A-2 I$
$ \Rightarrow \left[ {\begin{array}{*{20}{l}}
1&{ – 2} \\
4&{ – 4}
\end{array}} \right] = $ $k\left[ {\begin{array}{*{20}{l}}
3&{ – 2} \\
4&{ – 2}
\end{array}} \right] – 2\left[ {\begin{array}{*{20}{l}}
1&0 \\
0&1
\end{array}} \right]$
$\Rightarrow\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]=\left[\begin{array}{ll}3 k & -2 k \\ 4 k & -2 k\end{array}\right]-\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]=\left[\begin{array}{cc}3 k-2 & -2 k \\ 4 k & -2 k-2\end{array}\right]$
Comparing the corresponding elements, we have:
$3 k-2=1$
$\Rightarrow 3 k=3$
$\Rightarrow $ $k=1$
Thus, the value of $k$ is $1$.