Gujarati
4-1.Complex numbers
normal

If $\left(\frac{1+i}{1-i}\right)^{m}=1$ then find the least positive integral value of $m$.

A

$4$

B

$4$

C

$4$

D

$4$

Solution

$\left(\frac{1+i}{1-i}\right)^{m}=1$

$\Rightarrow\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m}=1$

$\Rightarrow\left(\frac{(1+i)^{2}}{1^{2}+1^{2}}\right)^{m}=1$

$\Rightarrow\left(\frac{1^{2}+i^{2}+2 i}{2}\right)^{m}=1$

$\Rightarrow\left(\frac{1-1+2 i}{2}\right)^{m}=1$

$\Rightarrow\left(\frac{2 i}{2}\right)^{m}=1$

$\Rightarrow i^{m}=1$

$\Rightarrow i^{m}=i^{4 k}$

$\therefore m=4 k,$ where $k$ is some integer.

Therefore, the least positive integer is $1 .$

Thus, the least positive integral value of $m$ is $4(=4 \times 1)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.