- Home
- Standard 11
- Mathematics
Let $\quad S=\left\{z \in C-\{i, 2 i\}: \frac{z^2+8 i z-15}{z^2-3 i z-2} \in R \right\}$. $\alpha-\frac{13}{11} i \in S , \alpha \in R -\{0\}$, then $242 \alpha^2$ is equal to
$1680$
$1681$
$1682$
$1683$
Solution
$\left(\frac{z^2+81 z-15}{z^2-3 i z-2}\right) \in R$
$\Rightarrow 1+\frac{(11 i z-13)}{\left(z^2-3 i z-2\right)} \in R$
Put $z=\alpha-\frac{13}{11} i$
$\Rightarrow\left(z^2-3 i z-2\right)$ is imaginary
Put $z=x+i y$
$\Rightarrow\left(x^2-y^2+2 x y i-3 i x+3 y-2\right) \in \text { Imaginary }$
$\Rightarrow \operatorname{Re}\left(x^2-y^2+3 y-2+(2 x y-3 x) i\right)=0$
$\Rightarrow x^2-y^2+3 y-2=0$
$x^2=y^2-3 y+2$
$x^2=y^2-3 y+2$
$x^2=(y-1)(y-2) \therefore z=\alpha-\frac{13}{11} i$
Put $x=\alpha, y=\frac{-13}{11}$
$\alpha^2=\left(\frac{-13}{11}-1\right)\left(\frac{-13}{11}-2\right)$
$\alpha^2=\frac{(24 \times 35)}{121}$
$242 \alpha^2=48 \times 35=1680$