3 and 4 .Determinants and Matrices
medium

यदि $A ^{\prime}=\left[\begin{array}{rr}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ तथा $B =\left[\begin{array}{rrr}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$ हैं तो सत्यापित कीजिए कि

$( A + B )^{\prime}= A ^{\prime}+ B ^{\prime}$

Option A
Option B
Option C
Option D

Solution

It is known that $A=\left(A^{\prime}\right)^{\prime}$

Therefore, we have:

$A=\left[\begin{array}{lll}3 & -1 & 0 \\ 4 & 2 & 1\end{array}\right]$

$B^{\prime}=\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]$

$A+B=\left[\begin{array}{ccc}3 & -1 & 0 \\ 4 & 2 & 1\end{array}\right]+\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}2 & 1 & 1 \\ 5 & 4 & 4\end{array}\right]$

$\therefore(A+B)^{\prime}=\left[\begin{array}{ll}2 & 5 \\ 1 & 4 \\ 1 & 4\end{array}\right]$

$A^{\prime}+B^{\prime}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}2 & 5 \\ 1 & 4 \\ 1 & 4\end{array}\right]$

Thus, we verified that $(A+B)^{\prime}=A^{\prime}+B^{\prime}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.