3 and 4 .Determinants and Matrices
easy

If $\mathrm{A}, \,\mathrm{B}$ are symmetric matrices of same order, then $\mathrm{A B}-\mathrm{B A}$ is a

A

Zero matrix

B

Symmetric matrix

C

Skew symmetric matrix

D

Identity matrix

Solution

$A$ and $B$ are symmetric matrices, therefore, we have :

$A^{\prime}=A$ and $B^{\prime}=B$  ………. $(1)$

Consider $(A B-B A)^{\prime} =(A B)^{\prime}-(B A)^{\prime}$   $[\because $   $=A^{\prime} -B^{\prime}] $

$=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}$  $ [ \because $  $B^{\prime} A^{\prime}]$

$=B A-A B $   $[$  by $(1)$ $]$

$=-\,(A B-B A)$

$\therefore  $ $(A B-A B)^{\prime} =-(A B-B A)$

Thus, $(A B-B A)$ is a skew-symmetric matrix.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.