- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $\mathrm{A}, \,\mathrm{B}$ are symmetric matrices of same order, then $\mathrm{A B}-\mathrm{B A}$ is a
A
Zero matrix
B
Symmetric matrix
C
Skew symmetric matrix
D
Identity matrix
Solution
$A$ and $B$ are symmetric matrices, therefore, we have :
$A^{\prime}=A$ and $B^{\prime}=B$ ………. $(1)$
Consider $(A B-B A)^{\prime} =(A B)^{\prime}-(B A)^{\prime}$ $[\because $ $=A^{\prime} -B^{\prime}] $
$=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}$ $ [ \because $ $B^{\prime} A^{\prime}]$
$=B A-A B $ $[$ by $(1)$ $]$
$=-\,(A B-B A)$
$\therefore $ $(A B-A B)^{\prime} =-(A B-B A)$
Thus, $(A B-B A)$ is a skew-symmetric matrix.
Standard 12
Mathematics