3 and 4 .Determinants and Matrices
medium

જો $\alpha$ નું મૂલ્ય ....... હોય, તો $\mathrm{A}+\mathrm{A}^{\prime}=\mathrm{I},$ થાય, જ્યાં $\mathrm{A}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right].$

A

$\frac{\pi}{6}$

B

$\frac{3\pi}{2}$

C

${\pi}$

D

$\frac{\pi}{3}$

Solution

$A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$\Rightarrow A^{\prime}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$

Now $A+A^{\prime}=1$

$\therefore $    $\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]+\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$

$\Rightarrow $   $\left[\begin{array}{cc}2 \cos \alpha & 0 \\ 0 & 2 \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Comparing the corresponding elements of the two matrices, we have :

$\cos \alpha=\frac{1}{2}$

$\alpha=\cos ^{-1}\left(\frac{1}{2}\right)$

$\therefore   $ $\alpha=\frac{\pi}{3}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.