- Home
- Standard 12
- Mathematics
If $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right],$ prove that $\mathrm{A}^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right], n \in \mathrm{N}$.
Solution
It is given that $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
To show: $P(n) A^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right], n \in \mathrm{N}$
We shall prove the result by using the principles of mathematical induction. For $n=1,$ we have :
$P(1)=\left[\begin{array}{lll}3^{1-1} & 3^{1-1} & 3^{1-1} \\ 3^{1-1} & 3^{1-1} & 3^{1-1} \\ 3^{1-1} & 3^{1-1} & 3^{1-1}\end{array}\right]$ $=\left[\begin{array}{lll}3^{0} & 3^{0} & 3^{0} \\ 3^{0} & 3^{0} & 3^{0} \\ 3^{0} & 3^{0} & 3^{0}\end{array}\right]$ $=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ $=A$
Therefore, the result is true for $n=1$
Let the result be true for $n=k$
$P(k): A^{k}=\left[\begin{array}{lll}3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1}\end{array}\right]$
That is Now, we prove that the result is true for $n=k+1$
Now, $A^{k+1}=A \cdot A^{k}$
$=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1}\end{array}\right]$
$=\left[\begin{array}{lll}3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1} \\ 3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1} \\ 3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1}\end{array}\right]$
$=\left[\begin{array}{lll}3.3^{(k+1)-1} & 3.3^{(k+1)-1} & 3.3^{(k+1)-1} \\ 3.3^{(k+1)-1} & 3.3^{(k+1)-1} & 3.3^{(k+1)-1} \\ 3.3^{(k+1)-1} & 3.3^{(k+1)-1} & 3.3^{(k+1)-1}\end{array}\right]$
Therefore, the result is true for $n=k+1$
Thus, by the principal of mathematical induction, we have:
$A^{n}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right], n \in \mathrm{N}$