- Home
- Standard 12
- Mathematics
Let $A=\left[a_{i j}\right]$ be a square matrix of order $3$ such that $a_{i j}=2^{j-i}$, for all $i, j=1,2,3$. Then, the matrix $A ^{2}+ A ^{3}+\ldots+ A ^{10}$ is equal to
$\left(\frac{3^{10}-3}{2}\right) A$
$\left(\frac{3^{10}-1}{2}\right) A$
$\left(\frac{3^{10}+1}{2}\right) A$
$\left(\frac{3^{10}+3}{2}\right) A$
Solution
$A=\left(\begin{array}{lll}1 & 2 & 2^{2} \\ 1 / 2 & 1 & 2 \\ 1 / 2^{2} & 1 / 2 & 1\end{array}\right)$
$A^{2}=3 A$
$A ^{3}=3^{2} A$
$A ^{2}+ A ^{3}+\ldots A ^{10}$
$=3 A +3^{2} A +\ldots+3^{9} A =\frac{3\left(3^{9}-1\right)}{3-1} A$
$=\frac{3^{10}-3}{2} A$
Similar Questions
A manufacturer produces three products $x,\, y,\, z$ which he sells in two markets. Annual sales are indicated below:
Market | $x$ | $y$ | $z$ |
$I$ | $10,000$ | $2,000$ | $18,000$ |
$II$ | $6,000$ | $20,000$ | $8,000$ |
If unit sale prices of $x, \,y$ and $z$ are Rs. $2.50$, Rs. $1.50$ and Rs. $1.00,$ respectively, find the total revenue in each market with the help of matrix algebra.