If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$B-C$
Which of the following pairs of sets are disjoint
$\{1,2,3,4\}$ and $\{ x:x$ is a natural number and $4\, \le \,x\, \le \,6\} $
If $A =$ [$x:x$ is a multiple of $3$] and $B =$ [$x:x$ is a multiple of $5$], then $A -B$ is ($\bar A$ means complement of $A$)
If $A$ and $B$ are disjoint, then $n(A \cup B)$ is equal to
Show that if $A \subset B,$ then $(C-B) \subset( C-A)$