Find the union of each of the following pairs of sets :
$X =\{1,3,5\} \quad Y =\{1,2,3\}$
$\{ 1,2,3,5\} $
$X=\{1,3,5\} Y=\{1,2,3\}$
$X \cup Y=\{1,2,3,5\}$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$B \cup C$
Let $A$ and $B$ be subsets of a set $X$. Then
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$A-C$
If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $
$A-B$
Confusing about what to choose? Our team will schedule a demo shortly.