If $A = \{x : x$ is a multiple of $4\}$ and $B = \{x : x$ is a multiple of $6\}$ then $A \cap B$ consists of all multiples of

  • A

    $16$

  • B

    $12$

  • C

    $8$

  • D

    $4$

Similar Questions

Let $A = \{a, b, c\}, B = \{b, c, d\}, C = \{a, b, d, e\},$ then $A \cap (B \cup C)$ is

Show that if $A \subset B,$ then $(C-B) \subset( C-A)$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$\left( {A \cap B} \right) \cap \left( {B \cup C} \right)$

If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find

$Y-X$

Consider the sets $A$ and $B$ of $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$ Find $A \cap B .$