If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to
$3$
$9$
$6$
None of these
(c) Since $A \subseteq B,\,\,\,\therefore A \cup B = B$
So, $n(A \cup B) = n(B) = 6$.
Let $\mathrm{X}=\{\mathrm{n} \in \mathrm{N}: 1 \leq \mathrm{n} \leq 50\} .$ If $A=\{n \in X: n \text { is a multiple of } 2\}$ and $\mathrm{B}=\{\mathrm{n} \in \mathrm{X}: \mathrm{n} \text { is a multiple of } 7\},$ then the number of elements in the smallest subset of $X$ containing both $\mathrm{A}$ and $\mathrm{B}$ is
Let $V =\{a, e, i, o, u\}$ and $B =\{a, i, k, u\} .$ Find $V – B$ and $B – V$
Let $A = \{ (x,\,y):y = {e^x},\,x \in R\} $, $B = \{ (x,\,y):y = {e^{ – x}},\,x \in R\} .$ Then
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup C} \right)$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$D-A$
Confusing about what to choose? Our team will schedule a demo shortly.