If $3 \cot A=4,$ check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.
It is given that $3 \cot A=4$
Or, cot $A =\frac{4}{3}$
Consider a right triangle $ABC$, right-angled at point $B$.
$\cot A=\frac{\text { Side adjacent to } \angle A}{\text { Side opposite to } \angle A}$
$\frac{A B}{B C}=\frac{4}{3}$
If $AB$ is $4 k$, then $BC$ will be $3 k$, where $k$ is a positive integer.
$\ln \triangle ABC$
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$=(4 k)^{2}+(3 k)^{2}$
$=16 k^{2}+9 k^{2}$
$=25 k^{2}$
$A C=5 k$
$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC }$
$=\frac{4 k}{5 k }=\frac{4}{5}$
$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$
$=\frac{3 k }{5 k }=\frac{3}{5}$
$\tan A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AB }$
$=\frac{3 k }{4 k}=\frac{3}{4}$
$\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}$
$=\frac{\frac{7}{16}}{\frac{25}{16}}=\frac{7}{25}$
$\cos ^{2} A-\sin ^{2} A=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}$
$=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}$
$\quad \frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$
If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.
$9 \sec ^{2} A-9 \tan ^{2} A=..........$
State whether the following are true or false. Justify your answer.
$(i)$ The value of tan $A$ is always less than $1 .$
$(ii)$ $\sec A=\frac{12}{5}$ for some value of angle $A$.
Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$