In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$

1043-18

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To find the length of the side $BC ,$ we will choose the trigonometric ratio involving $BC$ and the given side $AB$. since $BC$ is the side adjacent to angle $C$ and $AB$ is the side opposite to angle $C ,$ therefore

$\frac{ AB }{ BC }=\tan C$

$\frac{5}{ BC }=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

which gives $BC =5 \sqrt{3} \,cm$

To find the length of the side $AC ,$ we consider

$\sin 30^{\circ}=\frac{ AB }{ AC }$

$\frac{1}{2}=\frac{5}{ AC }$

$AC =10 \,cm$

Note that alternatively we could have used Pythagoras theorem to determine the third side in the example above,

$AC =\sqrt{ AB ^{2}+ BC ^{2}}=\sqrt{5^{2}+(5 \sqrt{3})^{2}} cm =10 \,cm$

Similar Questions

Show that:

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

Express the trigonometric ratios $\sin A , \sec A$ and $\tan A$ in terms of $\cot A$.

Evaluate the following:

$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$