$\sin 2 A=2 \sin A$ is true when $A=$

  • A

    $60^{\circ}$

  • B

    $30^{\circ}$

  • C

    $45^{\circ}$

  • D

    $0^{\circ}$

Similar Questions

Evaluate the following:

$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$

Evaluate:

$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$

Evaluate:

$\cos 48^{\circ}-\sin 42^{\circ}$

If $\sin 3 A =\cos \left( A -26^{\circ}\right),$ where $3 A$ is an acute angle, find the value of $A= . . . . ^{\circ}$.

State whether the following are true or false. Justify your answer.

The value of $\sin \theta$ increases as $\theta$ increases.