$\sin 2 A=2 \sin A$ is true when $A=$
$60^{\circ}$
$30^{\circ}$
$45^{\circ}$
$0^{\circ}$
Evaluate the following:
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
Evaluate:
$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$
Evaluate:
$\cos 48^{\circ}-\sin 42^{\circ}$
If $\sin 3 A =\cos \left( A -26^{\circ}\right),$ where $3 A$ is an acute angle, find the value of $A= . . . . ^{\circ}$.
State whether the following are true or false. Justify your answer.
The value of $\sin \theta$ increases as $\theta$ increases.